Mesh Analysis

Mesh Processing

Conclusion 00

Mesh Processing: Theory and Applications

Jean-Marie Favreau

UdA, LIMOS (UMR 6158)

May-June 2016

Slides available online: http://jmfavreau.info/spi6/

Mesh Analysis

Mesh Processing

Conclusion 00

Introduction

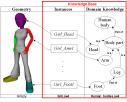
Mesh Analysis

Mesh Processing

Conclusion

Motivations Available data

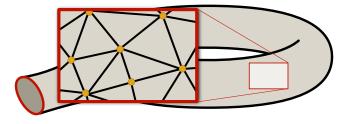
Mesh Analysis


Motivations Required tasks

Aesh Processing

Conclusion 00

- Retrieval in databases
- Shape recognition
- Semantic extraction
- Shape deformation
- Augmented reality
- ...



Mesh Analysis

Mesh Processing

Conclusion

Triangular Mesh

Vertices, edges, triangles.

Mesh Processing

Conclusion

Motivations

Data Structures A mesh in a file

OFF

cube.off

A cube

8 6 12

```
1.0
      0.0
            1.0
      1.0
            1.0
 0.0
-1.0
      0.0
           1.0
 0.0 -1.0
           1.0
 1.0
      0.0
           -1.0
 0.0
    1.0
           -1.0
-1.0
      0.0
           -1.0
 0.0 -1.0
           -1.0
     123
 4
   0
   7403
 4
 4
   4
     510
 4
   5621
 4
   3267
 4
   6547
```

File formats

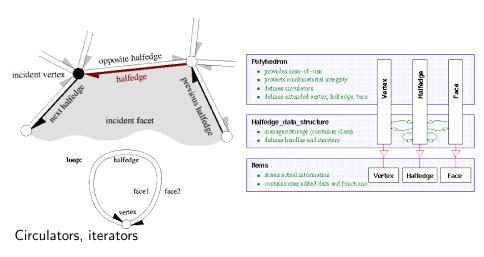
ascii (off, obj, ply, ...), binary (wrl, ...), application specific (blend)

Available data

- A list of vertices (3d coordinates)
- A list of facets (IDs of the vertices)
- Supplementary information for each vertex/facet (color, texture, etc.)
- Possibly edges, textures, etc.

Naive (and matlab) data structures

The list of 3D coordinates, and the list of facets.


Mesh Analysis

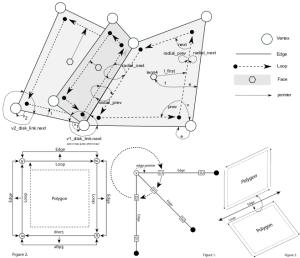
Mesh Processing

Conclusion 00

Motivations

Data Structures Halfedge based approach (CGAL, OpenMesh)

Mesh Analysis


Mesh Processing

Conclusion

Motivations

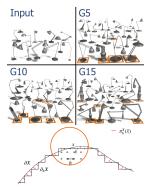
Data Structures

Blender data structure

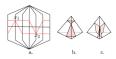
Mesh Analysis

Mesh Processing

Conclusion


Many scientific communities

Scientific Fields

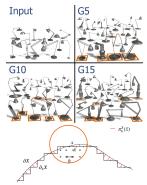

- Computer vision
- Geometry modelling
- Computer graphics
- Computational geometry
- Computational topology
- Discrete geometry
- Digital geometry
- Medical imaging

Lemma 7 The singular normal surface in a tube specified by the gluing is immersed if and only if both variables of the tube are equal.

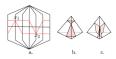
Mesh Analysis

Mesh Processing

Conclusion


Many scientific communities

Sc. Fields: "End users"

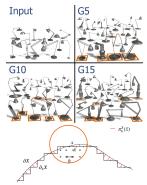

- Computer vision
- Geometry modelling
- Computer graphics
- Computational geometry
- Computational topology
- Discrete geometry
- Digital geometry
- Medical imaging

Lemma 7 The singular normal surface in a tube specified by the gluing is immersed if and only if both variables of the tube are equal.

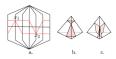
Mesh Analysis

Mesh Processing

Conclusion


Many scientific communities

Sc. Fields: Model fitting

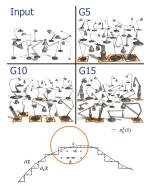

- Computer vision
- Geometry modelling
- Computer graphics
- Computational geometry
- Computational topology
- Discrete geometry
- Digital geometry
- Medical imaging

Lemma 7 The singular normal surface in a tube specified by the gluing is immersed if and only if both variables of the tube are equal.

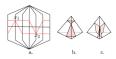
Mesh Analysis

Mesh Processing

Conclusion


Many scientific communities

Sc. Fields: Fast & eye candy

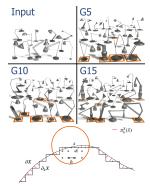

- Computer vision
- Geometry modelling
- Computer graphics
- Computational geometry
- Computational topology
- Discrete geometry
- Digital geometry
- Medical imaging

Lemma 7 The singular normal surface in a tube specified by the gluing is immersed if and only if both variables of the tube are equal.

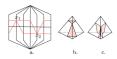
Mesh Analysis

Mesh Processing

Conclusion


Many scientific communities

Sc. Fields: Mathematics

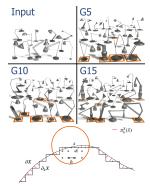

- Computer vision
- Geometry modelling
- Computer graphics
- Computational geometry
- Computational topology
- Discrete geometry
- Digital geometry
- Medical imaging

Lemma 7 The singular normal surface in a tube specified by the gluing is immersed if and only if both variables of the tube are equal.

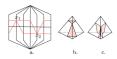
Mesh Analysis

Mesh Processing

Conclusion


Many scientific communities

Sc. Fields: Algebra

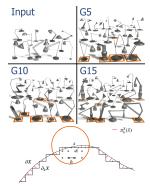

- Computer vision
- Geometry modelling
- Computer graphics
- Computational geometry
- Computational topology
- Discrete geometry
- Digital geometry
- Medical imaging

Lemma 7 The singular normal surface in a tube specified by the gluing is immersed if and only if both variables of the tube are equal.

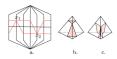
Mesh Analysis

Mesh Processing

Conclusion


Many scientific communities

Sc. Fields: Algorithmics

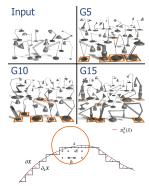

- Computer vision
- Geometry modelling
- Computer graphics
- Computational geometry
- Computational topology
- Discrete geometry
- Digital geometry
- Medical imaging

Lemma 7 The singular normal surface in a tube specified by the gluing is immersed if and only if both variables of the tube are equal.

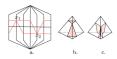
Mesh Analysis

Mesh Processing

Conclusion


Many scientific communities

Sc. Focus of this lecture


- Computer vision
- Geometry modelling
- Computer graphics
- Computational geometry
- Computational topology
- Discrete geometry
- Digital geometry
- Medical imaging

Lemma 7 The singular normal surface in a tube specified by the gluing is immersed if and only if both variables of the tube are equal.

Mesh Analysis

Mesh Processing

Conclusion 00

Mesh Analysis

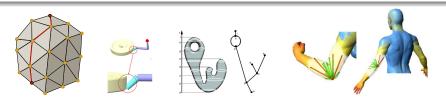
Mesh Analysis

Mesh Processing

Conclusion

Mesh Analysis - ingredients

Measure


Distances, areas, diameters, etc.

Understand

Relative position, extremities, excentricity, shape, primitives, etc.

Extract abstract description

Global structure, extrema, squeleton, etc.

Mesh Analysis

Mesh Processing

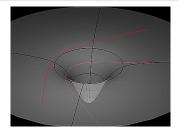
Conclusion

Measure on Surfaces

Mesh Analysis Measure on Surfaces

Mesh Analysis

Measure on Surfaces


Geodesic distance

Mesh Processing

Conclusion

Geodesic path

A geodesic is a shortest path between two points of the surface.

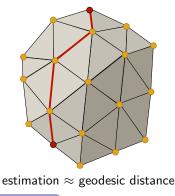
Alternative definition: on a Riemannian space, the parallel transport along the curve preserves the tangent vector to the curve.

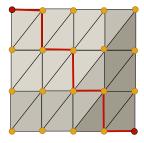
Geodesic distance

The **geodesic distance** between two points is *the length of a corresponding geodesic*.

Mesh Analysis

Mesh Processing


Conclusion


Measure on Surfaces

Geodesic distance

First approach using Dijkstra

First approximation: shortest path along edges.

estimation $\approx \sqrt{2} \times$ geodesic distance Manhattan distance

Dijkstra algorithm

Mesh Analysis

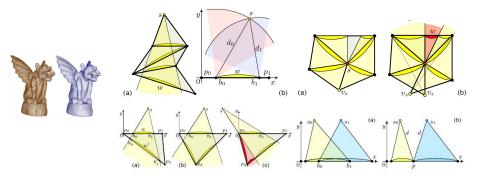
Mesh Processing

Conclusion 00

Measure on Surfaces

Geodesic distance

Exact and approximate computation (Surazhsky 2005)


Mesh Analysis

Conclusion

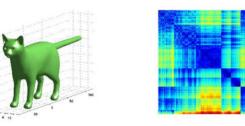
Measure on Surfaces

Geodesic distance

Exact and approximate computation (Surazhsky 2005)

Not easy to implement. Memory complexity of the exact algorithm: $O(n^3)$.

Mesh Analysis


Mesh Processing

Conclusion

Measure on Surfaces

Application: Mesh Signature¹

16

Geodesic distance matrix

¹Smeets, D., Fabry, T., Hermans, J., Vandermeulen, D., & Suetens, P. (2010). Inelastic deformation invariant modal representation for non-rigid 3D object recognition. In Articulated Motion and Deformable Objects (pp. 162-171). Springer Berlin Heidelberg.

0000000	
Topology	

Mesh Analysis

Mesh Processing

Conclusion 00

Mesh Analysis Topology

Mesh Analysis

Mesh Processing

Conclusion 00

Topology

2-manifold (with boundary) Definition, intuition

Surfacic simplicial complex (2-mesh)

A simplicial complex is said to be *an oriented surface* if it's of dimension 2, if the neigborhood of each 0-simplex is equivalent to a disc or an half-disc, and if the orientation of the faces are coherent.

Mesh Analysis

Conclusion

Topology

2-manifold (with boundary)

Inspection, implementation

Inspect the mesh

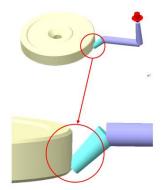
- Vertices: check the coherency of the neigborhood
- Edges: check the number of adjacent faces
- Faces: check the orientation of the adjacent faces
- Mesh: check if the manifold is orientable

Mesh Analysis

Conclusion

Topology

Connected components Definition, intuition


Connected components

A **connected component** in a graph is a subgraph in which two vertices are connected to each other by paths.

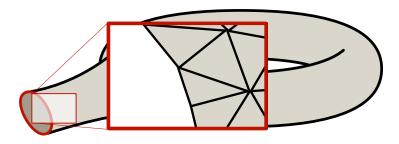
Not to be confused with ...

Intersections, self-intersections, embedding...

Number of connected components

Introduction 0000000 Topology

Borders Definition, intuition


Mesh Analysis

Mesh Processing

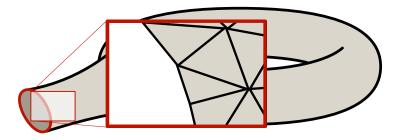
Conclusion

Border

A border of an oriented surface is defined by a loop of boundary edges.

Number of borders

Mesh Analysis

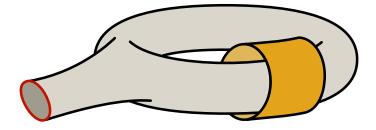

Mesh Processing

Conclusion

Topology

Borders

Inspection, implementation


Question: How to count the number of boundaries?

Mesh Analysis

Mesh Processing

Conclusion

Genus Definition, intuition

Genus: number of "handles"

Introduction 0000000 Topology

Genus

Mesh Analysis

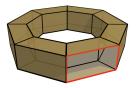
Mesh Processing

Conclusion

Euler caracteristic

Effective computation

$$\chi = \#$$
vertices $- \#$ edges $+ \#$ faces


Genus (for surfaces without boundary)

$$g = \frac{2-\chi}{2}$$

Genus (for surfaces with boundary)

?

Mesh Analysis

Conclusion 00

Topology

Fundamental group (first homotopy group) Definition, intuition

Loop, base point

Let $p \in \mathcal{M}$ be a base point. A loop $\gamma \in \mathcal{L}(\mathcal{M}, p)$ on \mathcal{M} is a continuous application $\gamma : [0; 1] \to \mathcal{M}$ such that $\gamma(0) = \gamma(1) = p$.

Homotopy

Two loops based on $p \gamma_0, \gamma_1$ are homotopic $(\gamma_0 \sim \gamma_1)$ iif $\exists \delta : [0; 1] \times [0; 1] \rightarrow E$ such that: $\delta(\cdot, 0) = \gamma_0(\cdot), \ \delta(\cdot, 1) = \gamma_1(\cdot), \ \delta(0, \cdot) = \delta(1, \cdot) = p.$

Fundamental group

 $\mathcal{L}(\mathcal{M}, \textbf{\textit{p}})$ quotient by \sim is the fundamental group.

Other ingredients: contractile loop, separating loop... **Questions:** dimension of the group?

Mesh Analysis

Topology

Reeb Graph

Requirement: \mathcal{M} is a differentiable manifold

Smooth scalar function, contour lines

Let $f : \mathcal{M} \to \mathbb{R}$ be a smoothed scalar function on the mesh. A contour line (or *level set*) is the inverse image of a point in \mathbb{R} .

Critical points (maxima, saddle points)

p critical point \Leftrightarrow gradient of f in p is 0.

Non degenerated (non singular) critical point


Critical point p not generated \Leftrightarrow number of decreasing directions ≤ 2 .

Mesh Processing

Conclusion

Introduction 0000000 Topology Mesh Analysis

Mesh Processing

Conclusion

Morse function

Reeb Graph

 $f: \mathcal{M} \to \mathbb{R}$ is a Morse function \Leftrightarrow smooth function with no degenerated critical points.

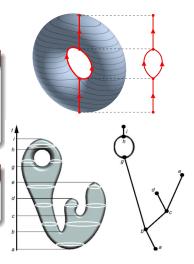
We define
$$\mathcal{M}^{a} = f^{-1}(] - \infty; a]$$
).

Topological changes

Let a < b. If $f^{-1}([a; b])$ compact with no critical point between a and b, then \mathcal{M}^b deformation retracts onto \mathcal{M}^a .

Mesh Analysis

Reeb Graph Definition, intuition Mesh Processing


Conclusion

Equivalent relation

We define an equivalent relation \sim such that $p \sim p \Leftrightarrow p$ and q belong to the same connected component for a single level set $f^{-1}(c)$ for some real c.

Reeb graph

The Reeb graph is the quotient space \mathcal{M}/\sim .

Mesh Analysis

Conclusion

Topology

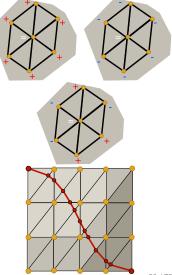
Reeb Graph on meshes Some ideas on the computation

Some ideas on the computation

Function definition

Scalar function only defined in vertices (+linear interpolation)

Avoid constant functions


Add a different epsilon on each f(p) to insure the total ordrer

Identify critical points

Compare local values in the 1-ring

Level sets

Compute piecwise-linear paths throw triangles

Mesh Analysis

Conclusion

Topology

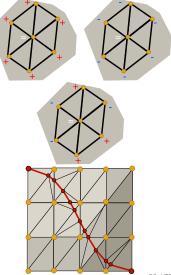
Reeb Graph on meshes Some ideas on the computation

Some ideas on the computation

Function definition

Scalar function only defined in vertices (+linear interpolation)

Avoid constant functions

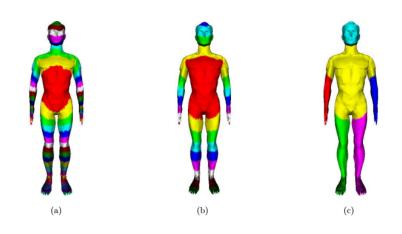

Add a different epsilon on each f(p) to insure the total ordrer

Identify critical points

Compare local values in the 1-ring

Level sets

Compute piecwise-linear paths throw triangles


Mesh Analysis

Mesh Processing

Conclusion

Topology

Reeb Graph First application: mesh segmentation (Berretti *et al*, 2009)

Mesh Analysis

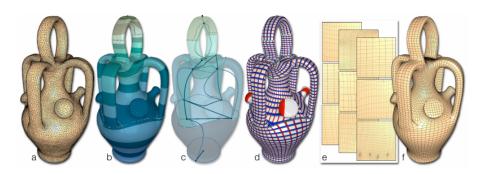
Mesh Processing

Conclusion

Topology

Reeb Graph

Second application: squeleton (PhD Tierny, 2008; Reuter 2010)



Mesh Analysis

Mesh Processing

Conclusion

Topology Reeb Graph Third application: parameterization (Thierny 2011)

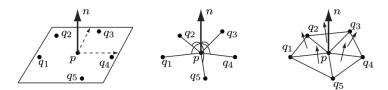
Mesh Analysis

Mesh Processing

Conclusion

Local Quantification

Mesh Analysis Local Quantification


Mesh Analysis

Mesh Processing

Conclusion

Local Quantification

Normal computation Intuition and practical questions

Strongly dependant of the scientific community

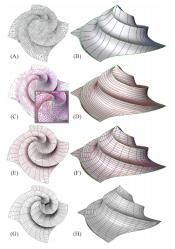
Mesh processing community

- Use the mesh and only the mesh
- Compute a mean of the normals in a neigborhood
- Supplementary ingredients:
 - Radius of the neigborhood
 - Area of the triangles

Mesh Analysis

Mesh Processing

Conclusion


Local Quantification

Principal curvatures

Illustrations (Cohen-Steiner and Morvan 2003, Alliez et al, 2003)

Minimum curvature

blue: minimum, red: maximum

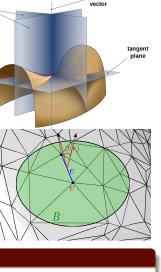
Mesh Analysis

Mesh Processing

Conclusion

normal

Local Quantification

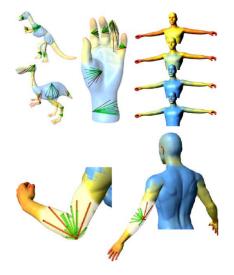

Principal curvatures computation or principal curvatures intuition and practical questions (Alliez et al, 2003)

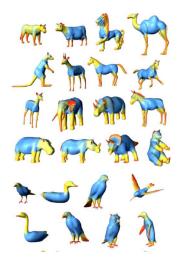
$$au({m v}) = rac{1}{|B|} \sum_{edges \ e} eta(e) |e \cap B| ar{e} ar{e}^t$$

- B: geodesic disc window
- $\beta(e)$: angle betwen triangle normals
- $|e \cap B|$: length of *e* inside *B*
- ē: unit vector along e

Curvature values

- κ_{\min} , κ_{\max} : eigenvalues of τ , min. and max. curvature amplitudes
- γ_{min} , γ_{max} : eigenvectors of τ , min. and max. curvature vectors

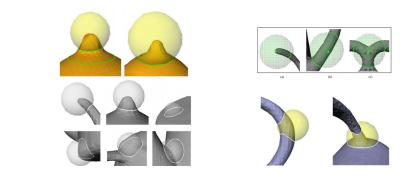

Mesh Analysis


Mesh Processing

Conclusion 00

Local Quantification

Shape Diameter Function (Shapira et al, 2008)


Mesh Analysis

Local Quantification

Local topology Taylor (Mortara 2004)

Mesh Processing

Conclusion

Mesh Analysis

Mesh Processing

Conclusion 00

Mesh Processing

Mesh Analysis

Mesh Processing

Conclusion

Mesh Processing – ingredients

Mesh segmentation

Segmentation/labelling/cutting driven by geometry, topology, semantic

Local modifications

Mesh simplification, remeshing, smoothing

Global modifications

Parameterization, mesh deformation.

Applications

Computer graphics, medical imaging

imagse manquantes

Mesh Analysis

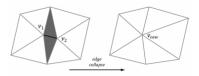
Mesh Processing

Conclusion

Local Modification

Mesh Processing Local Modification

Mesh Analysis


Mesh Processing

Conclusion

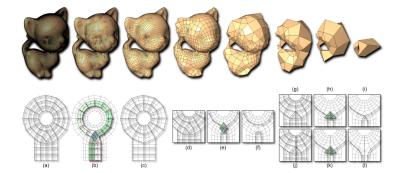
Local Modification

Mesh simplification Edge Collapsing approaches (Hoppe 1993, Daniels 2008)

Hoppe 1993

- Local cost defined by geometry
- Iterative optimization

Mesh Analysis


Mesh Processing

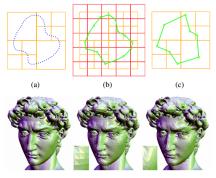
Conclusion

Local Modification

Mesh simplification

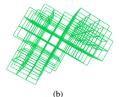
Edge Collapsing approaches (Hoppe 1993, Daniels 2008)

Mesh Analysis


Mesh Processing

Conclusion

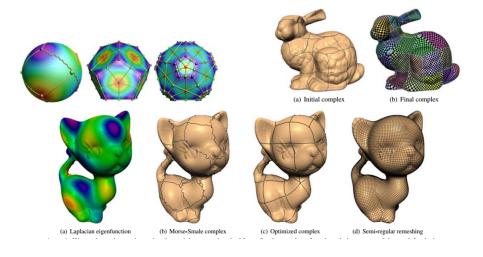
Local Modification


Mesh simplification

Octree-based and local adjustment (Boubekeur 2007)

Figure 4: Hierarchical mesh simplification with L^2 error bounded at 2.10^{-3} . Left: Original object (7M triangles). Middle: Octree simplification (1.75 sec. - 62856 triangles). Right: VS-Tree simplification (1.20 sec. - 52024 triangles).

(a)


Mesh Analysis

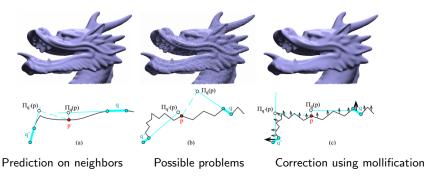
Local Modification

Mesh remeshing Spectral approach (Dong 2006)

Mesh Processing

Conclusion

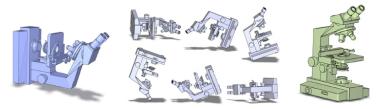
Mesh Analysis

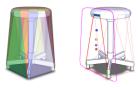

Local Modification

Mesh smoothing (Jones 2003)

Mesh Processing

Conclusion


Mesh Analysis

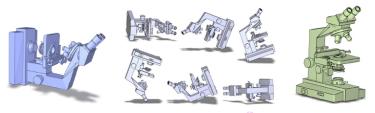

Local Modification

Mesh orientation

Mesh Processing

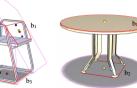
Conclusion 00

Facets of the convex hull


Mesh Analysis

Local Modification

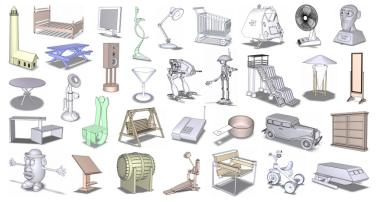
Mesh orientation


Mesh Processing

Conclusion 00

ha

- projected center of mass (yellow)
- barycenter of supporting polygon (red)
- barycenter of convex hull proj. on sup. plane (pink)
- barycenter of actual base (blue)


Mesh Analysis

Local Modification

Mesh orientation

Mesh Processing

Conclusion

Ingredients: {static stability, symmetry, parallelism} + learning

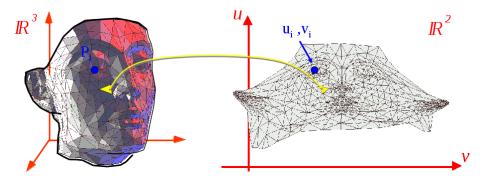
Mesh Analysis

Mesh Processing

Conclusion

Global Modifications

Mesh Processing Global Modifications


Mesh Analysis

Mesh Processing

Conclusion

Global Modifications

Mesh unfolding Explicit parameterization (Scheffer 2011)

 (u_i, v_i) values are the 2D coordinates of P_i

Mesh Analysis

Mesh Processing

Conclusion

Global Modifications

Mesh unfolding Explicit parameterization (Scheffer 2011)

To evaluate the quality of a parameterization:

- Conformal parameterization: preserve the angles
- Equivalent parameterization: preserve the areas

Impossible to conciliate both, classical problem in cartography

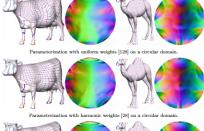
orthographic \sim 500 B.C.

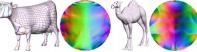
stereographic ~ 150 B C

conforme

Mercator 1569 *conform*

Lambert 1772 equivalent


Mesh Analysis

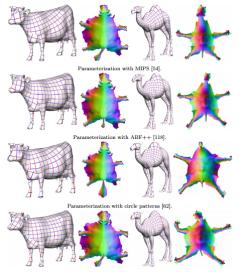

Mesh Processing

Conclusion

Global Modifications

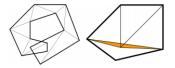
Mesh unfolding Explicit parameterization (Scheffer 2011)

Parameterization with mean value weights [33] on a circular domain.


Parameterization with LSCM [79]

Fixed borders

Mesh Analysis


Global Modifications

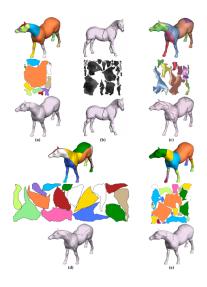
Mesh unfolding Explicit parameterization (Scheffer 2011)

Mesh Processing

Conclusion

Non fixed borders

Stretch minimizing parameterization [107].

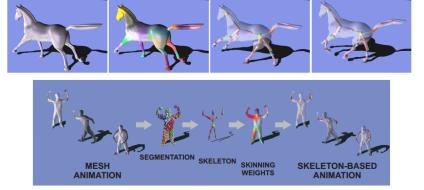

Mesh Analysis

Mesh Processing

Conclusion 00

Global Modifications

Mesh unfolding Explicit parameterization (Scheffer 2011)

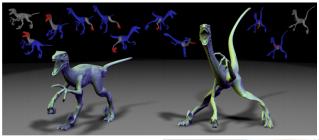

Mesh Analysis

Mesh Processing

Conclusion

Global Modifications

Mesh deformation Skeleton-based approach (de Aguiar 2008)


Mesh Analysis

Mesh Processing

Conclusion 00

Global Modifications

Mesh deformation Using proximity (Boubekeur 2008)

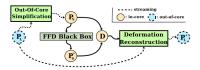
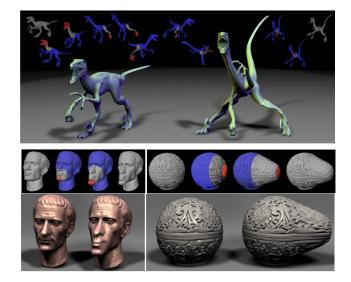


Figure 3: Left: XYZRGB Dragon (7.2M triangles). Middle: Close-up of the eyeball on the original geometry. Right: Adaptive downsampling by out-of-core VS-Tree clustering.


Mesh Analysis

Mesh Processing

Conclusion 00

Global Modifications

Mesh deformation Using proximity (Boubekeur 2008)

Mesh Analysis

Mesh Processing

Conclusion

Mesh Segmentation

Mesh Processing Mesh Segmentation

Mesh Analysis

Mesh Processing

Conclusion

Mesh Segmentation

Mesh Segmentation Definition, motivations

Mesh segmentation

Split the mesh into regions with coherent properties

Properties

Geometry, topology, additionnal information

Motivations

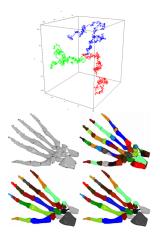
Shape analysis, understanding, matching, partial recognition, substitution, ...

Vlesh Analysis

Mesh Segmentation

Mesh Segmentation Random walk approaches (Lai 2008)

Random walk


- Graph-based approach
- Nodes and probability of walking from one node to another
- Description by a sparse linear system
- **Result:** probability to reach the point from a seed using a random walk

Question: what value for the edge probability?

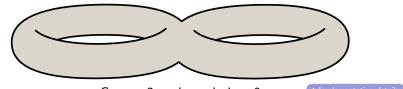
Mesh Processing

Conclusion

Mesh Analysis

Mesh Processing

Conclusion


Mesh Segmentation

Mesh cutting driven by topology

Optimal cutting — variation **Input:** a surface \mathcal{M} (non homeomorphic to a disc) **Begin**

- While $genus(\mathcal{M}) \neq 0$ do
 - Find the shortest non separating loop /
 - Cut \mathcal{M} according to I
- $\bullet\,$ Cut according to the **shortest spanning tree** joining the boundaries of ${\cal M}$

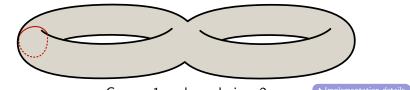
End

Genus: 2 — boundaries: 0 [Implementation] Frickson and S. Har-Peled, Optimally Cutting a Surface into a Disk, ACM Symposium on Computational Geometry, 2002

Mesh Analysis

Mesh Processing

Conclusion


Mesh Segmentation

Mesh cutting driven by topology

Optimal cutting — variation **Input:** a surface \mathcal{M} (non homeomorphic to a disc) **Begin**

- While $genus(\mathcal{M}) \neq 0$ do
 - Find the shortest non separating loop /
 - Cut \mathcal{M} according to I
- $\bullet\,$ Cut according to the **shortest spanning tree** joining the boundaries of ${\cal M}$

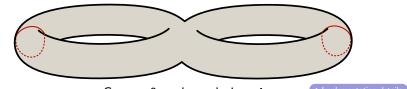
End

Genus: 1 — boundaries: 2
Frickson and S. Har-Peled, Optimally Cutting a Surface into a Disk, ACM Symposium on Computational Geometry, 2002

Mesh Analysis

Mesh Processing

Conclusion


Mesh Segmentation

Mesh cutting driven by topology

Optimal cutting — variation **Input:** a surface \mathcal{M} (non homeomorphic to a disc) **Begin**

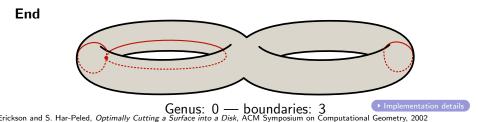
- While $genus(\mathcal{M}) \neq 0$ do
 - Find the shortest non separating loop /
 - Cut \mathcal{M} according to I
- $\bullet\,$ Cut according to the **shortest spanning tree** joining the boundaries of ${\cal M}$

End

Genus: 0 — boundaries: 4 Implementation of Crickson and S. Har-Peled, Optimally Cutting a Surface into a Disk, ACM Symposium on Computational Geometry, 2002

Mesh Analysis

Mesh Processing


Conclusion

Mesh Segmentation

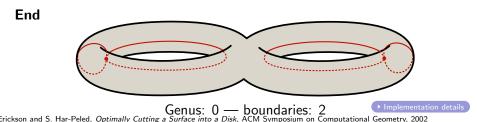
Mesh cutting driven by topology

Optimal cutting — variation **Input:** a surface \mathcal{M} (non homeomorphic to a disc) **Begin**

- While $genus(\mathcal{M}) \neq 0$ do
 - Find the shortest non separating loop /
 - Cut \mathcal{M} according to I
- $\bullet\,$ Cut according to the **shortest spanning tree** joining the boundaries of ${\cal M}$

Mesh Analysis

Mesh Processing


Conclusion

Mesh Segmentation

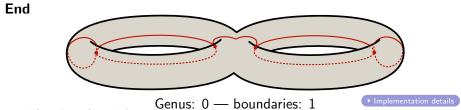
Mesh cutting driven by topology

Optimal cutting — variation **Input:** a surface \mathcal{M} (non homeomorphic to a disc) **Begin**

- While $genus(\mathcal{M}) \neq 0$ do
 - Find the shortest non separating loop /
 - Cut \mathcal{M} according to I
- $\bullet\,$ Cut according to the **shortest spanning tree** joining the boundaries of ${\cal M}$

Mesh Analysis

Mesh Processing


Conclusion

Mesh Segmentation

Mesh cutting driven by topology

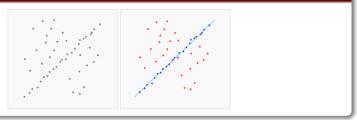
Optimal cutting — variation **Input:** a surface \mathcal{M} (non homeomorphic to a disc) **Begin**

- While $genus(\mathcal{M}) \neq 0$ do
 - Find the shortest non separating loop /
 - Cut \mathcal{M} according to I
- $\bullet\,$ Cut according to the **shortest spanning tree** joining the boundaries of ${\cal M}$

Frickson and S. Har-Peled, Optimally Cutting a Surface into a Disk, ACM Symposium on Computational Geometry, 2002

Intuition

Mesh Segmentation


Primitive fitting

Mesh Analysis

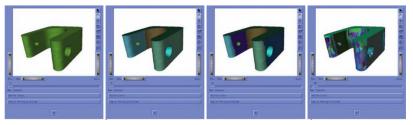
Mesh Processing

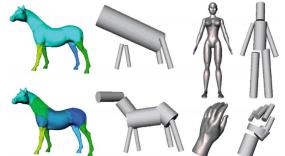
Conclusion

On point clouds (RANdom SAmple Consensus)

On 3D meshes

- Sphere, plane, cylinder, cone, etc.
- Sparse data with structure (triangles)


Mesh Analysis


Mesh Processing

Conclusion

Mesh Segmentation

Primitive fitting Hierarchical approach (Attene 2006)

Mesh Analysis

Mesh Processing

Conclusion

Mesh Segmentation

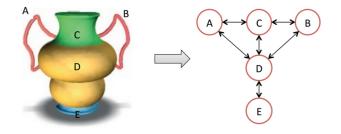
Semantic segmentation Functionality (Laga 2015)

Segmentation

- Decompose a 3D model into nearly-convex parts

Segmentation with Randomized Cuts (Golovinskiy et al. 2009)

Mesh Analysis


Mesh Processing

Conclusion

Mesh Segmentation

Semantic segmentation Functionality (Laga 2015)

- Initial structural graph
 - Each shape part forms a node
 - Connect adjacent parts with an undirected edge

Mesh Analysis

Mesh Processing

Conclusion

Mesh Segmentation

Semantic segmentation Functionality (Laga 2015)

- Enrich the graph with more structural relations
 - Side contact, co-centricity, symmetry, containment

A and C are in side contact with B

D, E, and F are co-centric

Parts in A are symmetric

A is contained in B

Mesh Analysis

Mesh Processing

Conclusion

Mesh Segmentation

Semantic segmentation Functionality (Laga 2015)

- Enrich the graph with more structural relations
 - Side contact, co-centricity, symmetry, containment
 - Horizontal support (in case we know the upright orientation)

A and C are in side contact with B

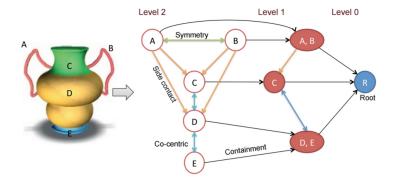
D, E, and F are co-centric

Parts in A are symmetric

A is

contained in B

C is a horizontal support of B


Mesh Analysis

Mesh Processing

Conclusion

Mesh Segmentation

Semantic segmentation Functionality (Laga 2015)

Aesh Analysis

Mesh Processing

Conclusion

Mesh Segmentation

Semantic segmentation Functionality (Laga 2015)

- Two nodes P_A and P_B are similar if
 - Their geometries are similar and their contexts are similar
- Compare the geometry of the nodes and the local structure of the graph around those nodes
 - Node geometry is captured with shape descriptors
 - Local structure captured with paths on the structural graph

Vesh Analysis

Mesh Processing

Conclusion

Mesh Segmentation

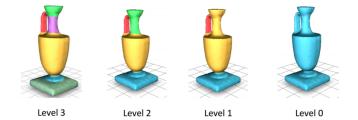
Semantic segmentation Functionality (Laga 2015)

Represent each node with geometric descriptors

Level 3

- D2 shape distribution [Osada et al. 2002]
- Component's size (radius of its bounding sphere)
- The three eigenvalues of the component (shapes are normalized for scale).

Mesh Analysis

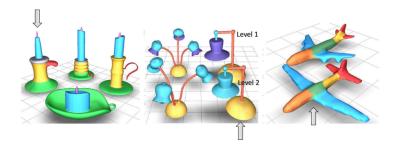

Mesh Processing

Conclusion

Mesh Segmentation

Semantic segmentation Functionality (Laga 2015)

Represent each node with geometric descriptors


Mesh Analysis

Mesh Processing

Conclusion

Mesh Segmentation

Semantic segmentation Functionality (Laga 2015)

Mesh Analysis

Mesh Processing

Conclusion

Mesh Segmentation

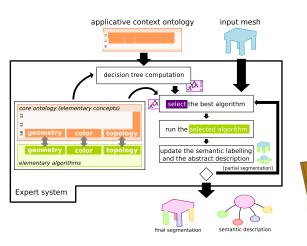
Semantic segmentation Functionality (Laga 2015)

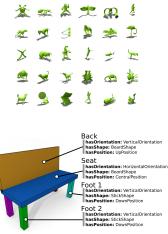
Geometry vs. Geometry + structure

(a) Best matches when using only the geometry of the part.

(b) Best matches when using part context.

25

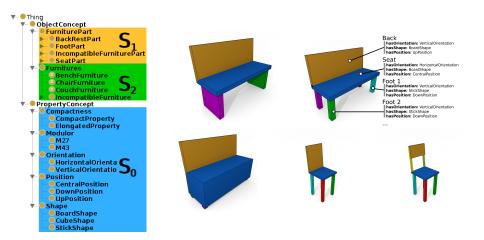

Mesh Analysis


Mesh Processing

Conclusion

Mesh Segmentation

Semantic segmentation Integrate the expert knowledge (Dietenbeck 2015)


Mesh Analysis

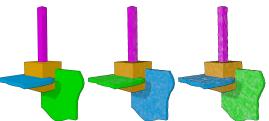
Mesh Processing

Conclusion

Mesh Segmentation

Semantic segmentation Integrate the expert knowledge (Dietenbeck 2015)

Mesh Analysis

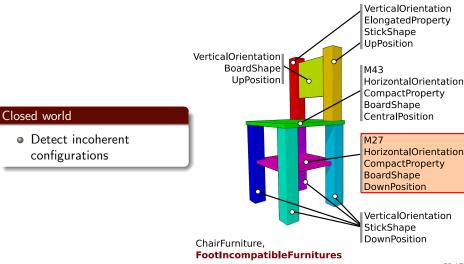

Mesh Processing

Conclusion

Mesh Segmentation

Semantic segmentation Integrate the expert knowledge (Dietenbeck 2015)

Vlesh Analysis

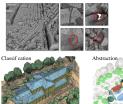

Mesh Processing

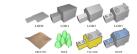
Conclusion 00

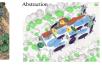
Mesh Segmentation

Semantic segmentation

Integrate the expert knowledge (Dietenbeck 2015)

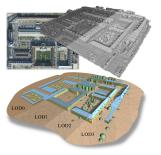

Mesh Analysis


Mesh Segmentation


Semantic segmentation Handle big data (Verdié 2015)

LOD Generation for Urban Scenes

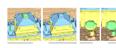
- Model reconstruction
- Segmentation
- Level of details



Reconstruction

Mesh Processing

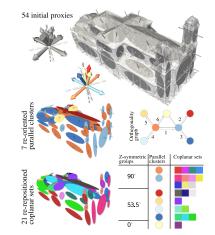
Conclusion 00


Mesh Analysis

Mesh Segmentation

Semantic segmentation Handle big data (Verdié 2015)

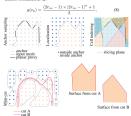
Semantic Rules


- —Rule 1. superfacets labeled as tree and adjacent to only superfacets labeled as roof are re-labeled roof. This rule relies on the common assumption that large trees are not located on top of roofs.
- -Rule 2. superfacets labeled as *facade* and adjacent to superfacets labeled as *tree* and *ground* are turned to *tree*.

Mesh Processing

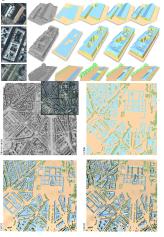
Conclusion

Mesh Analysis


Mesh Segmentation

Semantic segmentation Handle big data (Verdié 2015)

Mesh Processing


Conclusion

11M facets

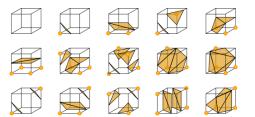
Introduction
0000000
Applications

Mesh Analysis

Mesh Processing

Conclusion 00

Mesh Processing Applications


Mesh Analysis

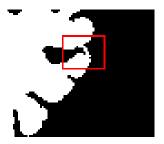
Mesh Processing

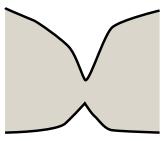
Conclusion

Applications

Cortical surface mapping Marching cube (Lorensen 1987)

Mesh Analysis


Mesh Processing


Conclusion

Applications

Cortical surface mapping Topological correction

- Partial volume effect
- Imprecision of the segmentation

Mesh Analysis

Mesh Processing

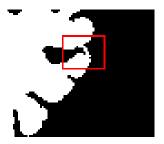
Conclusion

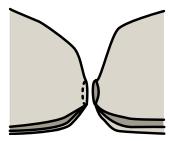
Applications

Cortical surface mapping Topological correction

- Partial volume effect
- Imprecision of the segmentation

Mesh Analysis


Mesh Processing


Conclusion

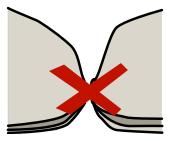
Applications

Cortical surface mapping Topological correction

- Partial volume effect
- Imprecision of the segmentation

Mesh Analysis

Mesh Processing


Conclusion

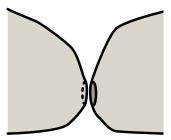
Applications

Cortical surface mapping Topological correction

- Partial volume effect
- Imprecision of the segmentation

Mesh Analysis

Mesh Processing


Conclusion

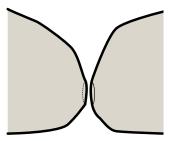
Applications

Cortical surface mapping Topological correction

- Partial volume effect
- Imprecision of the segmentation

Mesh Analysis

Mesh Processing

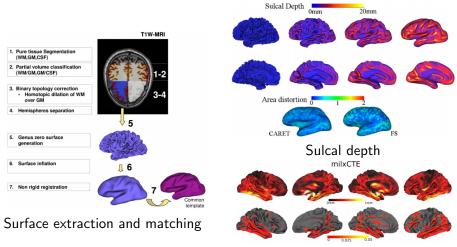

Conclusion

Applications

Cortical surface mapping Topological correction

- Partial volume effect
- Imprecision of the segmentation

Mesh Analysis


Mesh Processing

Conclusion

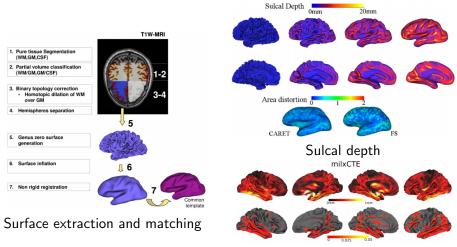
Applications

An example on medical imaging

Cortical surface mapping to quantify atrophy in Alzheimer's disease (Acosta 2009)

Significant locations

Mesh Analysis


Mesh Processing

Conclusion

Applications

An example on medical imaging

Cortical surface mapping to quantify atrophy in Alzheimer's disease (Acosta 2009)

Significant locations

Mesh Analysis

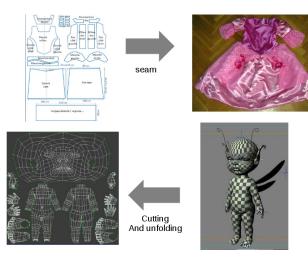
Applications

Computer graphics workflow

Classical pipeline

- Mesh modeling
- Texture mapping
- Rendering

Conclusion


Mesh Analysis

Mesh Processing

Conclusion 00

Applications

Computer graphics workflow

Introduction 0000000 Applications Mesh Analysis

Mesh Processing

Conclusion

Computer graphics workflow

Introduction 0000000 Mesh Analysis

Mesh Processing

Conclusion

Conclusion

Introduction 0000000 Tomorrow... Mesh Analysis

Mesh Processing

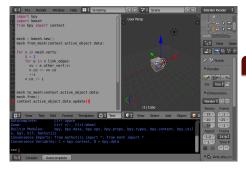
Conclusion •0

Tomorrow morning: blender (1)

Python scripting

- Introduction to the interface
- Shape modelization
- Texture and light adjustment
- Scene rendering

Introduction


Mesh Analysis

Mesh Processing

Conclusion

Tomorrow...

Friday morning: blender (2)

Python scripting

- Introduction to the API
- Tutorial on mesh processing

▶ Resources about blender

Algorithms

Algorithms Dijkstra

Dijkstra algorithm

▶ Go back to Geodesic distance

Animation on Wikipedia

```
Data: G: Graph; source: vertex
Data: dist: list of floats, prev: list of vertices
dist[source] \leftarrow 0;
prev[source] \leftarrow undefined;
forall vertex v in G do
     if v \neq source then
           dist[v] \leftarrow infinity;
           prev[v] \leftarrow undefined;
     end
     add v to Q;
end
while Q is not empty do
     u \leftarrow vertex in Q with min dist[u];
     remove u from Q:
     forall neighbor v of u do
           alt \leftarrow dist[u] + length(u, v);
           if alt i dist[u] then
               \mathsf{dist}[\mathtt{v}] \leftarrow \mathtt{alt};
prev[\mathtt{v}] \leftarrow \mathtt{u};
           end
     end
end
```

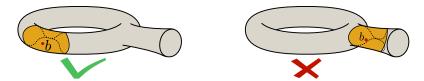
Algorithms

Dijkstra

Breadth first search

Go back to Connected Components

BFS algorithm (G, v)


```
Data: G: Graph; v: vertex
let Q be a queue;
label v as discovered:
while Q is not empty do
    v' \leftarrow Q.dequeue();
    process(v');
    forall edges from v' to w in G.adjacentEdges(v') do
        if w is not labeled as discovered then
            Q.enqueue(w);
            label w as discovered;
        end
    end
end
```

Depth-first search: replace the queue by a stack

Shortest non-separating loop (1)

Given a basepoint b

- Using a "geodesic" distance (e.g. Dijkstra²)
- Circular wavefront propagation
- Catching the junctions (and their nature)

Complexité: $O(n \log n)$

²Dijkstra. E. W. A note on two problems in connexion with graphs. *Numerische Mathematik*, 1(1):269–271, 1959.

Shortest non-separating loop (2)

General method:

- Construct a set *B* potential basepoints
- $\forall b \in B$ compute the **shortest** non-separating **loop**
- Keep the shortest

Complexité: $O(|B|n \log n)$

Shortest non-separating loop (2)

General method:

- Construct a set *B* potential basepoints
- $\forall b \in B$ compute the **shortest** non-separating **loop**
- Keep the shortest

How to compute *B*?

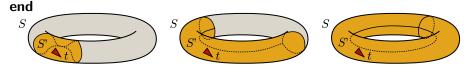
Complexité: $O(|B|n \log n)$

Shortest non-separating loop (2)

General method:

- Construct a set *B* potential basepoints
- $\forall b \in B$ compute the **shortest** non-separating **loop**
- Keep the shortest

How to compute B? Principle: a set crossed by all the non-separating loops


Complexité: $O(|B|n \log n)$

Shortest non-separating loop (3)

Principle: a set crossed by all the non-separating loops Input: a 2-mesh ${\cal M}$ (non homeomorphic to a sphere) Begin

- Select a starting triangle t
- Add t to a new 2-mesh \mathcal{M}'
- While all triangles are not visited do
 - Select a non visited triangle t_i adjacent to a visited triangle
 - Stick t_i to its neighbours on $\mathcal{M}'(\text{preserving the genus of } \mathcal{M}': \mathbf{0})$

• *B*: set of the boundary points of \mathcal{M}'

