Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Tools for tiling surfaces

Jean-Marie Favreau

Univ. Blaise Pascal (Clermont-Ferrand II), LIMOS UMR CNRS 6158 Clermont-Ferrand (France) PhD supervisor: Vincent Barra

2006-2009

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Introduction

- Surfaces
- Shape description
- Cutting / tilir
 - Cutting: why?
 - Surface cutting
- Tiling a surface
- Combine geometry and topology
 - Non-Euclidean distances
 - Medical imaging application
 - Selecting the extrema
 - Computer graphics application
- Non trivial tiles
 - Cutting into cylinders
 - n-cets
 - Cutting by *n*-loops
 - Applications
- Conclusion
 - Synthesis
 - Future

Introduction	
00000	

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Surfaces

Motivations

Amount of available data

- Various acquisitions (medical imaging, 3D scanners)
- Modeling (computer graphics, Computer-aided design)

Sources: AIM@Shape, Stanford 3D Scanning Repository

Introduction
00000
Surfaces

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Motivations

Amount of available data

Various problems:

- Analysis and measurement
- Transformations, distortions

Sources: AIM@Shape, Stanford 3D Scanning Repository

Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion
Shape description				
Geometry	/			

Quantification: local curvatures, distances, patterns, ...

J.-M. Favreau (UBP/CNRS)

Tools for tiling surfaces

Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles
Shape description			
Geometry	,		

Quantification: local curvatures, distances, patterns, ...

J.-M. Favreau (UBP/CNRS)

Tools for tiling surfaces

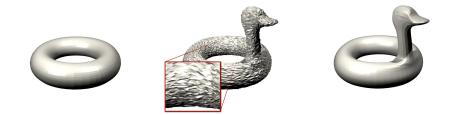
Introduction ••••••	Cutting / tiling	Combine geometry and topology	Non trivial tiles
Shape description			
Geometry	,		

Quantification: local curvatures, distances, patterns, ...

J.-M. Favreau (UBP/CNRS)

Tools for tiling surfaces

Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles
Shape description			
Geometry			

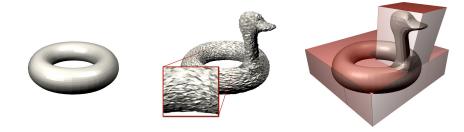


Quantification: local curvatures, distances, patterns, ...

J.-M. Favreau (UBP/CNRS)

Tools for tiling surfaces

Introduction 00000	Cutting / tiling	Combine geometry and topology	Non trivial tiles
Shape description			
Geometry	,		



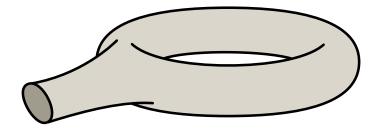
Quantification: local curvatures, distances, patterns, ...

J.-M. Favreau (UBP/CNRS)

Tools for tiling surfaces

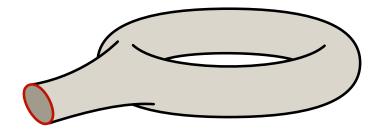
Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion
Shape description				
Topology				

Global information



Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion
Shape description				
Topology				

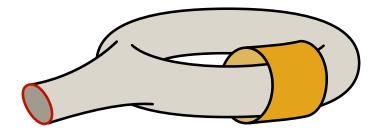
Global information



• Number of **boundaries**

Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion
Shape description				
Topology				

Global information



- Number of **boundaries**
- Number of handles: genus

Cutting / tiling

Combine geometry and topology

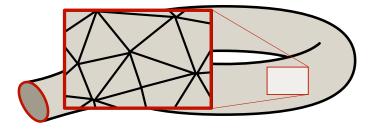
Non trivial tiles

Conclusion

Shape description

Simplicial complexes

Discrete representation by 2-meshes



• Disc: non-boundary region

Cutting / tiling

Combine geometry and topology

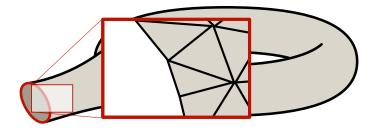
Non trivial tiles

Conclusion

Shape description

Simplicial complexes

Discrete representation by 2-meshes



- Disc: non-boundary region
- Half-disc: boundary region

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Shape description

Manipulating surfaces

Implies using both geometry and topology

- Topological tools: global
- Geometrical components: local

Towards a global using of the geometry

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Shape description

- Introduction
- Surfaces
- Shape description
- Cutting / tiling
 - Cutting: why?
 - Surface cutting
- Tiling a surface
- Combine geometry and topology
 - Non-Euclidean distances
 - Medical imaging application
 - Selecting the extrema
 - Computer graphics application
- Non trivial tiles
 - Cutting into cylinders
 - n-cets
 - Cutting by *n*-loops
 - Applications

- Synthesis
- Future

Cutting / tiling

Combine geometry and topology

Non trivial tiles

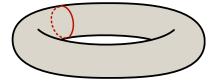
Conclusion

Introductio

- Surfaces
- Shape description
- 2
 - Cutting / tilingCutting: why?
 - Surface cutting
 - Tiling a surface
 - Combine geometry and topology
 - Non-Euclidean distances
 - Medical imaging application
 - Selecting the extrema
 - Computer graphics application
 - Non trivial tiles
 - Cutting into cylinders
 - n-cets
 - Cutting by *n*-loops
 - Applications
 - Conclusion
 - Synthesis
 - Future

Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion
Cutting: why?				
Cutting	reasons			

Topological changes



Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Cutting: why?

Cutting reasons

- Topological changes
- Segmentation

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Cutting: why?

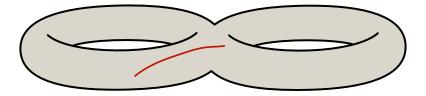
Cutting reasons

- Topological changes
- Segmentation
- Facilitate following manipulations

Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion
Surface cutting				
Paths, Io	oops			

Cutting according to:

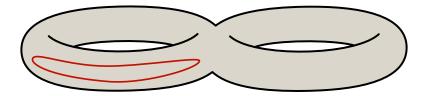
• a path



Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion
Surface cutting				
Paths, Io	ops			

Cutting according to:

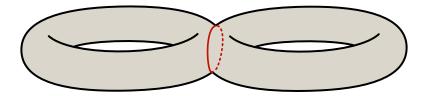
- a path
- a loop



Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion
Surface cutting				
Paths, Io	ops			

Cutting according to:

- a path
- a loop



Introduction	
000000	

Cutting / tiling

Combine geometry and topology

Non trivial tiles

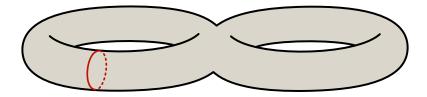
Conclusion

Surface cutting

Paths, loops

Cutting according to:

- a path
- a non-separating loop

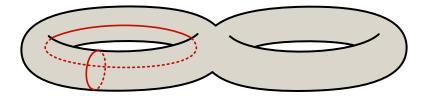


 \Rightarrow **Reducing** the genus

Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion
Surface cutting				
Paths, lo	ops			

Definition

A cutting on a 2-mesh \mathcal{M} is defined as a set of paths and loops $(C_i)_{1 \leq i \leq n}$



 \Rightarrow **Reducing** the genus and the number of boundaries

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

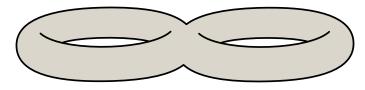
Surface cutting

Topological cutting

Optimal cutting — variation **Input:** a surface \mathcal{M} (non homeomorphic to a disc) **Begin**

- While $genus(\mathcal{M}) \neq 0$ do
 - Find the shortest non separating loop /
 - Cut ${\mathcal M}$ according to I
- $\bullet\,$ Cut according to the **shortest spanning tree** joining the boundaries of ${\cal M}$

End



J. Erickson and S. Har-Peled, Optimally Cutting a Surface into a Disk, ACM Symposium on Computational Geometry, 2002

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

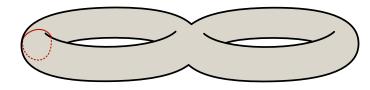
Surface cutting

Topological cutting

Optimal cutting — variation **Input:** a surface \mathcal{M} (non homeomorphic to a disc) **Begin**

- While $genus(\mathcal{M}) \neq 0$ do
 - Find the shortest non separating loop /
 - Cut ${\mathcal M}$ according to I
- $\bullet\,$ Cut according to the **shortest spanning tree** joining the boundaries of ${\cal M}$

End



J. Erickson and S. Har-Peled, Optimally Cutting a Surface into a Disk, ACM Symposium on Computational Geometry, 2002

J.-M. Favreau (UBP/CNRS)

Tools for tiling surfaces

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

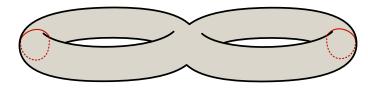
Surface cutting

Topological cutting

Optimal cutting — variation **Input:** a surface \mathcal{M} (non homeomorphic to a disc) **Begin**

- While $genus(\mathcal{M}) \neq 0$ do
 - Find the shortest non separating loop /
 - Cut ${\mathcal M}$ according to I
- $\bullet\,$ Cut according to the **shortest spanning tree** joining the boundaries of ${\cal M}$

End



Genus: 0 - boundaries: 4J. Erickson and S. Har-Peled, *Optimally Cutting a Surface into a Disk*, ACM Symposium on Computational Geometry, 2002

Cutting / tiling 00000000

Combine geometry and topology

Non trivial tiles

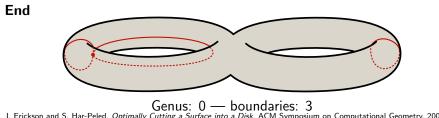
Conclusion

Surface cutting

Topological cutting

Optimal cutting — variation **Input:** a surface \mathcal{M} (non homeomorphic to a disc) Begin

- While genus(\mathcal{M}) \neq 0 do
 - Find the **shortest** non separating **loop** /
 - Cut \mathcal{M} according to I
- Cut according to the shortest spanning tree joining the boundaries of \mathcal{M}



J. Erickson and S. Har-Peled, Optimally Cutting a Surface into a Disk, ACM Symposium on Computational Geometry, 2002

Cutting / tiling

Combine geometry and topology

Non trivial tiles

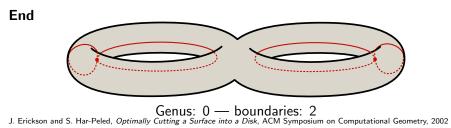
Conclusion

Surface cutting

Topological cutting

Optimal cutting — variation **Input:** a surface \mathcal{M} (non homeomorphic to a disc) **Begin**

- While $genus(\mathcal{M}) \neq 0$ do
 - Find the shortest non separating loop /
 - Cut ${\mathcal M}$ according to I
- $\bullet\,$ Cut according to the **shortest spanning tree** joining the boundaries of ${\cal M}$



Cutting / tiling

Combine geometry and topology

Non trivial tiles

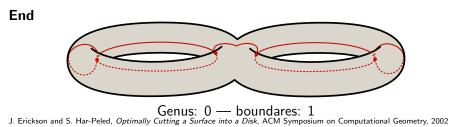
Conclusion

Surface cutting

Topological cutting

Optimal cutting — variation **Input:** a surface \mathcal{M} (non homeomorphic to a disc) **Begin**

- While $genus(\mathcal{M}) \neq 0$ do
 - Find the shortest non separating loop /
 - Cut ${\mathcal M}$ according to I
- $\bullet\,$ Cut according to the **shortest spanning tree** joining the boundaries of ${\cal M}$



Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Surface cutting

Computation time, topological cutting

Surface		Algorithme exact		Algorithme approché	
Genus	# vertices	Time (s)	Length	Time (s)	Length
1	3,072	0.51	3.139,33	0.04	3.245,53
1	12,288	5.09	3.139,33	0.19	3.180,83
2	3,326	1.05	7.070,2	0.08	7.676,53
2	13,310	9.72	7.070,2	0.42	7.392,49
3	6,908	3.45	34.360,9	0.34	55.308,7
3	27,644	32.49	34.360,9	1.84	37.619
4	8,826	5.48	41.770,3	0.68	83.485,4
4	35,322	58.37	41.770,3	3.69	66.257,5
104	543,652	-	_	48,mn	_

Comparison of an exact method and an approximative cutting method using shortest non separating loops.

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Tiling a surface

Tiling

Classical definition:

- On the plane
- Repeated patterns (tiles)
- Topologically trivial

Figure: M. C. Escher

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Tiling a surface

In our context:

- On surfaces
- Topology of the tiles not fixed
- Need for a precise description

Figure: tiling by discs and cylinders

Introduction	
000000	

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Tiling a surface

m-cellular complex

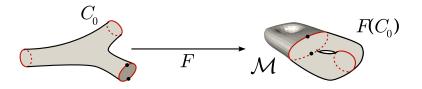
Definition

A m-cellular complex ${\mathcal C}$ is a set of m-cells with :

- 2-m-cells: compact connex 2-manifold with boundary
- 1-m-cells: simple curves (closed or opened)
- 0-*m*-cells: **points**
- **boundary** of any *i*-m-cell: (i 1)-sub-complex
- $\bullet\,$ The intersection of two m-cells is an m-cell of ${\cal C}\,$

Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion
Tiling a surface				
Tile				

- $F: C \longrightarrow \mathcal{M}$ embedding of a 2-m-cell C in a 2-mesh \mathcal{M} , with:
 - F continuous.
 - v vertex of $C \Rightarrow F(v)$ 0-simplex of \mathcal{M} .
 - e edge of $C \Rightarrow F(e)$ set of 1-simplexes de \mathcal{M} .
 - b body of $C \Rightarrow F(b)$ set of 2-simplexes de \mathcal{M} .
 - *F* **injective** on the interior of *C*. Images of two edges or two vertices should be equal.

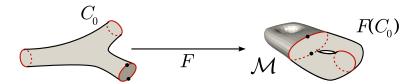


Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion
Tiling a surface				
Tile				

Equivalence relation

 $F \sim F'$ iff for all cell, edge or vertex X of C, F(X) = F'(X).

$M-tiles = equivalence \ classes$

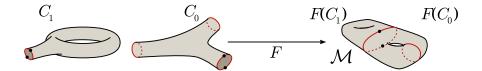


Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion
Tiling a surface				
Tiling				

M-tiling defined by equivalence classes of embeddings $F : \mathcal{C} \longrightarrow \mathcal{M}$ where:

- \forall 2-m-cell *C* of *C*, *F*_{|*C*} is an **M-tile**
- F injective except on the boundaries
- F is surjective

Two embeddings F and F' are equivalents $\Leftrightarrow \forall X \in C$, F(X) = F'(X).



Cutting / tiling

Combine geometry and topology

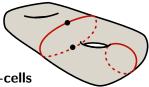
Non trivial tiles

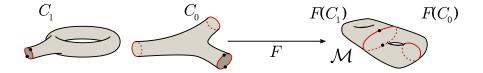
Conclusion

Tiling a surface

Cutting/tiling duality

- Paths and loops: images of the 1-m-cells
- Extremities of the paths: images of the 0-m-cells
- Complement: images of the 2-m-cells





Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Introduction

- Shape description
- Cutting / tiling
 - Cutting: why?
 - Surface cutting
 - Tiling a surface
 - Combine geometry and topology
 - Non-Euclidean distances
 - Medical imaging application
 - Selecting the extrema
 - Computer graphics application
- Non trivial tiles
 - Cutting into cylinders
 - n-cets
 - Cutting by *n*-loops
 - Applications

Conclusion

- Synthesis
- Future

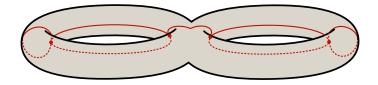
Combine geometry and topology

Non trivial tiles

Conclusion

Geometry as an component in the cutting process

General structure of the algorithms: topology



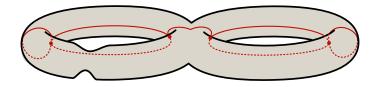
Combine geometry and topology

Non trivial tiles

Conclusion

Geometry as an component in the cutting process

General structure of the algorithms: topology



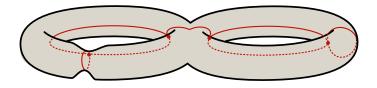
Combine geometry and topology

Non trivial tiles

Conclusion

Geometry as an component in the cutting process

General structure of the algorithms: topology

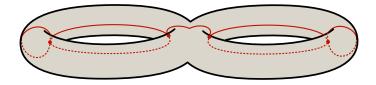


Precise driving by geometry

Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion
Non-Euclidean di	istances			
Distance	e			

Topological and geometrical cutting:

- Length of the loops and paths
- Depends on edges' length (Dijkstra)
- Generally speaking, Euclidean distance: \mathbb{R}^3 : $I_3(e)$



Other choices available

Cutting / tiling

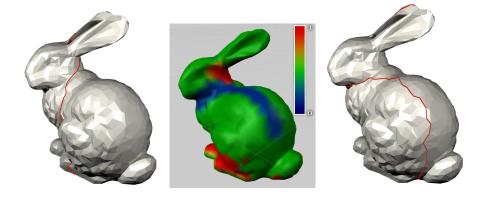
Combine geometry and topology

Non trivial tiles

Conclusion

Non-Euclidean distances

Cutting driven by user map and/or application



$$m_u: V \rightarrow [0,1]$$

 $l((v_1, v_2)) = l_3((v_1, v_2)) \times m_u(v_1) \times m_u(v_2)$

Cutting / tiling

Combine geometry and topology

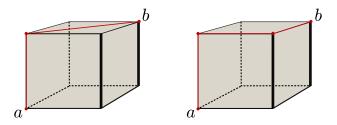
Non trivial tiles

Conclusion

Non-Euclidean distances

Using local curvature

Constrain the cutting using local curvature



Cutting / tiling

Combine geometry and topology

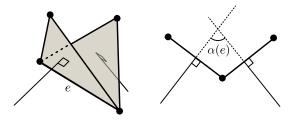
Non trivial tiles

Conclusion

Non-Euclidean distances

Using local curvature

Constrain the cutting using local curvature



Cutting / tiling

Combine geometry and topology

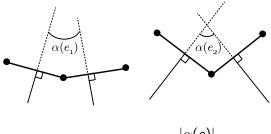
Non trivial tiles

Conclusion

Non-Euclidean distances

Using local curvature

Constrain the cutting using local curvature



$$l(e) = l_3(e) \times (1 - c \frac{|\alpha(e)|}{\pi})$$

with c constant

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Non-Euclidean distances

Using local curvature

Constrain the cutting using local curvature

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Medical imaging application

Medical context

Cortical stimulation

Cutting / tiling

Combine geometry and topology

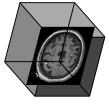
Non trivial tiles

Conclusion

Medical imaging application

Medical context

Cortical stimulation



Available data:

Anatomical MRI

Cutting / tiling

Combine geometry and topology

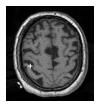
Non trivial tiles

Conclusion

Medical imaging application

Medical context

Cortical stimulation, electrodes' localization



Available data:

- Anatomical MRI
- 3D location of the electrodes

Cutting / tiling

Combine geometry and topology

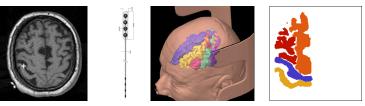
Non trivial tiles

Conclusion

Medical imaging application

Medical context

Cortical stimulation, electrodes' localization



Available data:

- Anatomical MRI
- 3D location of the electrodes
- Various specific information

Cutting / tiling

Combine geometry and topology

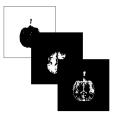
Non trivial tiles

Conclusion

Medical imaging application

Preprocessing: from the MRI to the surface

Segmentation



Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Medical imaging application

Preprocessing: from the MRI to the surface

- Segmentation
- Computation of a brain mask

Cutting / tiling

Combine geometry and topology

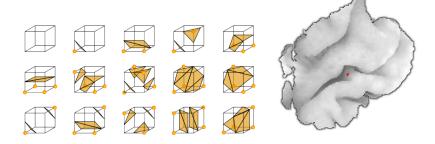
Non trivial tiles

Conclusion

Medical imaging application

Preprocessing: from the MRI to the surface

- Segmentation
- Computation of a brain mask
- Computation of the surface



Cutting / tiling

Combine geometry and topology

Non trivial tiles

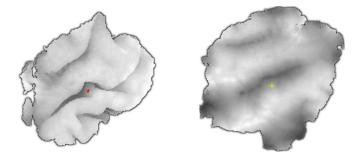
Conclusion

Medical imaging application

Flat map

Visulization tool: flat map

- Topological cutting (genus: 0, boundary: 1)
- Unfolding (conformal or quasi-conformal approaches)



C. R. Collins and K. Stephenson, A Circle Packing Algorithm, Computational Geometry: Theory and Applications, 2003

R. Zayer, B. Lévy and H.-P. Seidel, Linear Angle Based Parameterization, ACM/EG Symposium on Geometry Processing, 2007

J.-M. Favreau (UBP/CNRS)

Tools for tiling surfaces

Cutting / tiling

Combine geometry and topology

Non trivial tiles

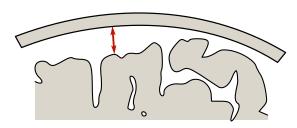
Conclusion

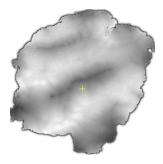
Medical imaging application

Flat map

Visulization tool: flat map

- Topological cutting (genus: 0, boundary: 1)
- Unfolding (conformal or quasi-conformal approaches)
- Data projection





Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

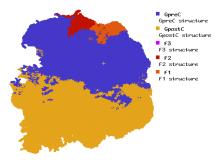
Medical imaging application

Flat map

Visulization tool: flat map

- Topological cutting (genus: 0, boundary: 1)
- Unfolding (conformal or quasi-conformal approaches)
- Data projection





Cutting / tiling

Combine geometry and topology

Non trivial tiles

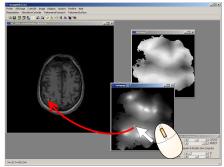
Conclusion

Medical imaging application

Flat map

Visulization tool: flat map

- Topological cutting (genus: 0, boundary: 1)
- Unfolding (conformal or quasi-conformal approaches)
- Data projection



Cutting / tiling

Combine geometry and topology

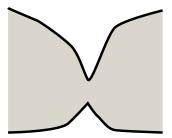
Non trivial tiles

Conclusion

Medical imaging application

Limitations

- Partial volume effects
- Imprecise segmentation



Cutting / tiling

Combine geometry and topology

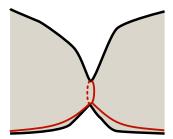
Non trivial tiles

Conclusion

Medical imaging application

Limitations

- Partial volume effects
- Imprecise segmentation



Cutting / tiling

Combine geometry and topology

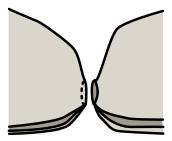
Non trivial tiles

Conclusion

Medical imaging application

Limitations

- Partial volume effects
- Imprecise segmentation



Cutting / tiling

Combine geometry and topology

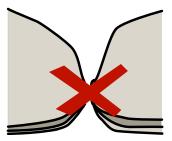
Non trivial tiles

Conclusion

Medical imaging application

Limitations

- Partial volume effects
- Imprecise segmentation



Cutting / tiling

Combine geometry and topology

Non trivial tiles

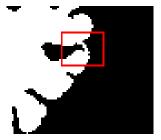
Conclusion

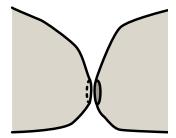
Medical imaging application

Correcting the α -junctions

After computation of the shortest loop

• Cut the 2-mesh according to the loop /





Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

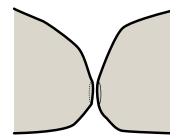
Medical imaging application

Correcting the α -junctions

After computation of the shortest loop

- Cut the 2-mesh according to the loop /
- If $length(l) < \alpha$: α -junction detection
 - Add 2 small discs to close the cutting





Cutting / tiling

Combine geometry and topology

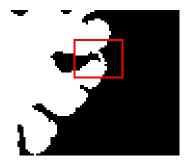
Non trivial tiles

Conclusion

Medical imaging application

Correcting the $\alpha\mbox{-junctions}$

Imprecise segmentation \Rightarrow broken maps



Cutting / tiling

Combine geometry and topology

Non trivial tiles

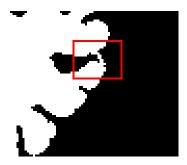
Conclusion

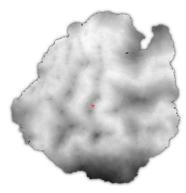
Medical imaging application

Correcting the α -junctions

Imprecise segmentation \Rightarrow broken maps

Correcting the α -junctions





Cutting / tiling

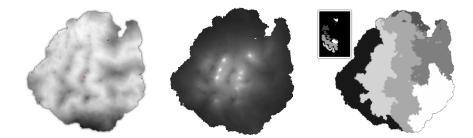
Combine geometry and topology

Non trivial tiles

Conclusion

Medical imaging application

Results



Cutting / tiling

Combine geometry and topology

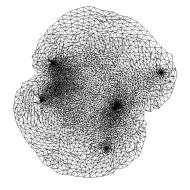
Non trivial tiles

Conclusion

Selecting the extrema

Distortion as geometrical information

Great distortion of triangles:



J.-M. Favreau and V. Barra, Cutting an Organic Surface, EuroCG, 2009

J.-M. Favreau (UBP/CNRS)

Tools for tiling surfaces

Cutting / tiling

Combine geometry and topology

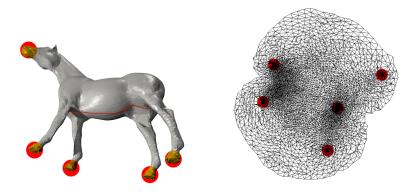
Non trivial tiles

Conclusion

Selecting the extrema

Distortion as geometrical information

Great distortion of triangles:



⇒ **Detect compressed areas** (protrusions)

J.-M. Favreau and V. Barra, Cutting an Organic Surface, EuroCG, 2009

J.-M. Favreau (UBP/CNRS)

Tools for tiling surfaces

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Selecting the extrema

Local distortion

- \mathcal{M} : 2-mesh
- Edge length in \mathbb{R}^3 : $I_3: E(\mathcal{M}) \to \mathbb{R}^+$
- Edge length in \mathbb{R}^2 : $I_2: E(\mathcal{M}) \to \mathbb{R}^+$

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Selecting the extrema

Local distortion

- \mathcal{M} : 2-mesh
- Edge length in $\mathbb{R}^3:\ \mathit{I}_3:\mathit{E}(\mathcal{M})\to\mathbb{R}^+$
- Edge length in $\mathbb{R}^2 {:}~ \mathit{l}_2 : \mathit{E}(\mathcal{M}) \to \mathbb{R}^+$

Definition

The distortion of an edge (v_1, v_2) is defined as

$$D(v_1, v_2) = I_3(v_1, v_2)/I_2(v_1, v_2)$$

J.-M. Favreau (UBP/CNRS)

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Selecting the extrema

Local distortion

- \mathcal{M} : 2-mesh
- Edge length in \mathbb{R}^3 : $I_3: E(\mathcal{M}) \to \mathbb{R}^+$
- Edge length in $\mathbb{R}^2 {:}~ \mathit{l}_2 : \mathit{E}(\mathcal{M}) \to \mathbb{R}^+$

Definition

The distortion of an edge (v_1, v_2) is defined as

$$D(v_1, v_2) = l_3(v_1, v_2)/l_2(v_1, v_2)$$

Definition

The distortion of an vertex v is defined as

$$D(v) = \frac{1}{|(v, v_i) \in E(\mathcal{M})|} \sum_{(v, v_i) \in E(\mathcal{M})} D(v, v_i)$$

J.-M. Favreau (UBP/CNRS)

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Selecting the extrema

Extremum definition

- \mathcal{M} : 2-mesh and B its boundary
- Using $D(\cdot, \cdot)$ in **Dijkstra algorithm** from *B*
- \Rightarrow defining a distance function: L_b

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

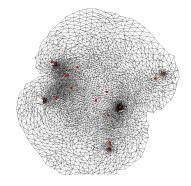
Selecting the extrema

Extremum definition

- \mathcal{M} : 2-mesh and B its boundary
- Using $D(\cdot, \cdot)$ in **Dijkstra algorithm** from *B*
- \Rightarrow defining a distance function: L_b

Definition

A *extremum* vertex v is a local maximum of L_b



Cutting / tiling

Combine geometry and topology

Non trivial tiles

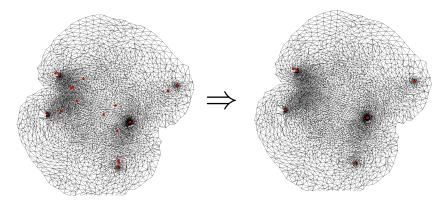
Conclusion

Computer graphics application

Extremum filtering

For graphical applications: too many extrema

- Ordering extrema using $D(\cdot)$
- Keep only high distortion vertices (mean, median, manual, etc.)



Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Computer graphics application

Geometrical cutting

Data:

- \bullet A 2-mesh ${\cal M}$ homeomorphic to a disc
- A set of extrema $(m_i)_{0 \le i < n}$

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

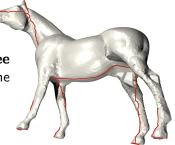
Computer graphics application

Geometrical cutting

Data:

- \bullet A 2-mesh ${\cal M}$ homeomorphic to a disc
- A set of extrema $(m_i)_{0 \le i < n}$

Cut according to the **shortest spanning tree** joining $(m_i)_{0 \le i < n}$ and the boundary using the **geodesic distance**



Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Computer graphics application

Cutting / tiling

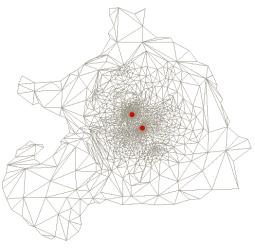
Combine geometry and topology

Non trivial tiles

Conclusion

Computer graphics application

Step by step example



Number of extrema: 19

J.-M. Favreau (UBP/CNRS)

Tools for tiling surfaces

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Computer graphics application

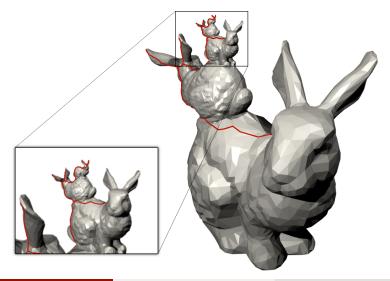
Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Computer graphics application



Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Computer graphics application

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Computer graphics application

Application: texture mapping

Texture regularity

Cutting / tiling

Combine geometry and topology

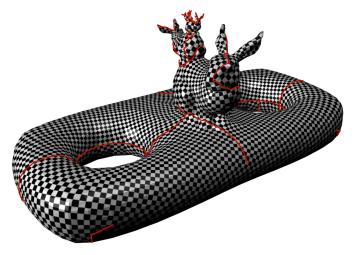
Non trivial tiles

Conclusion

Computer graphics application

Application: texture mapping

The multiscale rabbit on a double torus



Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Introduction

- Shape description
- Cutting / tilin
 - Cutting: why?
 - Surface cutting
 - Tiling a surface
- Combine geometry and topology
 - Non-Euclidean distances
 - Medical imaging application
 - Selecting the extrema
 - Computer graphics application
- Non trivial tiles
 - Cutting into cylinders
 - n-cets
 - Cutting by n-loops
 - Applications
- Conclusion
 - Synthesis
 - Future

Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion			
Cutting into cylinders							
Cylinders							

Genus: 0, boundaries: 2

Cutting / tiling

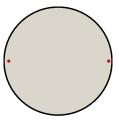
Combine geometry and topology

Non trivial tiles

Conclusion

Cutting into cylinders

Cylinders



Genus: 1, boundaries: 0

Cutting / tiling

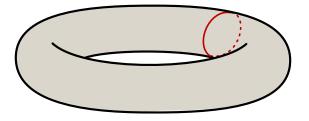
Combine geometry and topology

Non trivial tiles

Conclusion

Cutting into cylinders

Cylinders



Genus: 1, boundaries: 0

Cutting / tiling

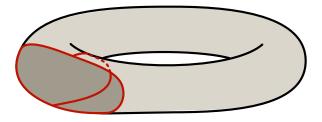
Combine geometry and topology

Non trivial tiles

Conclusion

Cutting into cylinders

Cylinders



Genus: 1, boundaries: 1

Cutting / tiling

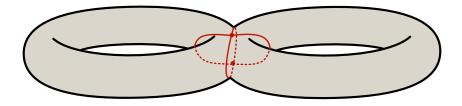
Combine geometry and topology

Non trivial tiles

Conclusion

Cutting into cylinders

Cylinders



Genus: 2, boundaries: 0

Cutting / tiling

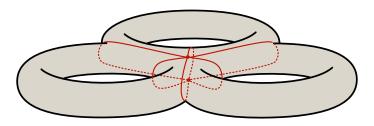
Combine geometry and topology

Non trivial tiles

Conclusion

Cutting into cylinders

Cylinders



Genus: 3, boundaries: 0

Cutting / tiling

Combine geometry and topology

Non trivial tiles

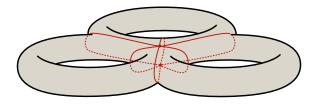
Conclusion

n-loops

n-loops: definition

Definition (*n*-loop on a 2-mesh \mathcal{M})

- Two base points b_0 and b_1
- *n* non-homotopic **paths** joining b_0 and b_1



n-loops

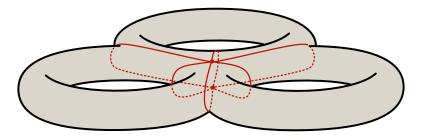
Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

From *n*-loop to 3-loops



three cylinders, one 6-loop

J.-M. Favreau (UBP/CNRS)

n-loops

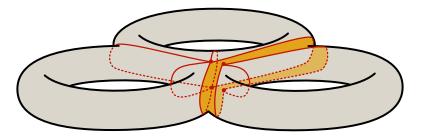
Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

From *n*-loop to 3-loops



four cylinders, one 5-loop, one 3-loop

n-loops

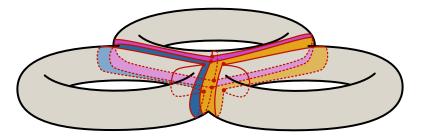
Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

From *n*-loop to 3-loops



six cylinders, four 3-loop

Cutting / tiling

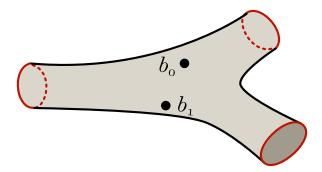
Combine geometry and topology

Non trivial tiles

Conclusion

Cutting by *n*-loops

Approximation of minimal 3-loop



Cutting / tiling

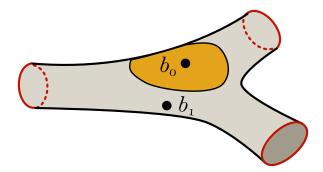
Combine geometry and topology

Non trivial tiles

Conclusion

Cutting by *n*-loops

Approximation of minimal 3-loop



Cutting / tiling

Combine geometry and topology

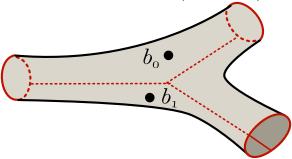
Non trivial tiles

Conclusion

Cutting by *n*-loops

Approximation of minimal 3-loop

Computation using the reduced **cut locus** (Voronoï cell)



Cutting / tiling

Combine geometry and topology

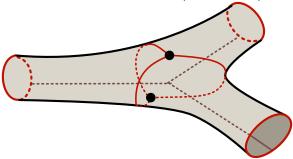
Non trivial tiles

Conclusion

Cutting by *n*-loops

Approximation of minimal 3-loop

Computation using the reduced **cut locus** (Voronoï cell)



Cutting / tiling

Combine geometry and topology

Non trivial tiles

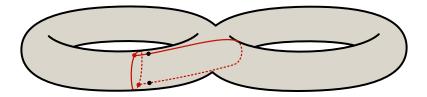
Conclusion

Cutting by *n*-loops

Adjustment by optimization

Goal: segmentation by cylinders using 3-loops

- Principle: optimize each 3-loop
- Energy function: length of the paths describing the 3-loop



Cutting / tiling

Combine geometry and topology

Non trivial tiles

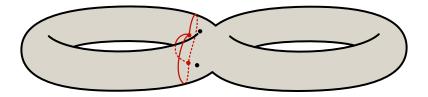
Conclusion

Cutting by *n*-loops

Adjustment by optimization

Goal: segmentation by cylinders using 3-loops

- Principle: optimize each 3-loop
- Energy function: length of the paths describing the 3-loop



Cutting / tiling

Combine geometry and topology

Non trivial tiles

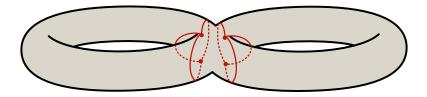
Conclusion

Cutting by *n*-loops

Adjustment by optimization

Goal: segmentation by cylinders using 3-loops

- Principle: optimize each 3-loop
- Energy function: length of the paths describing the 3-loop



Cutting / tiling

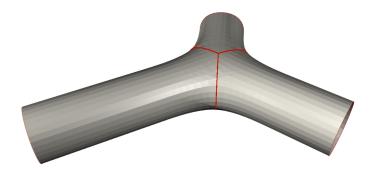
Combine geometry and topology

Non trivial tiles

Conclusion

Cutting by *n*-loops

Cylinders from 3-loops: results



Cutting / tiling

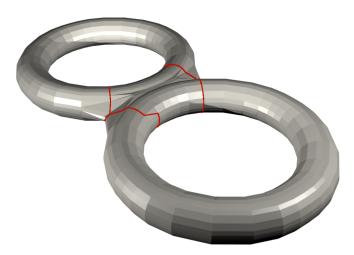
Combine geometry and topology

Non trivial tiles

Conclusion

Cutting by *n*-loops

Cylinders from 3-loops: results



Cutting / tiling

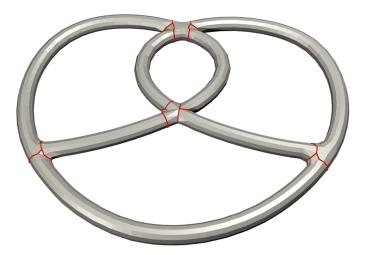
Combine geometry and topology

Non trivial tiles

Conclusion

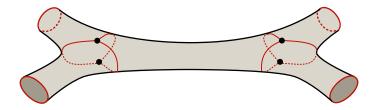
Cutting by *n*-loops

Cylinders from 3-loops: results



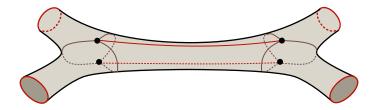
Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion		
Applications						
Quadrangulation						

Cutting into cylinders by *n*-loops: tiles with **2 vertices on each boundary**

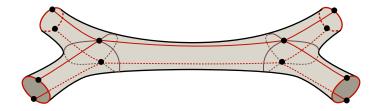


Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion
Applications				
Quadran	gulation			

Cutting into cylinders by *n*-loops: tiles with **2 vertices on each boundary**



Cutting into cylinders by *n*-loops: tiles with **2 vertices on each boundary**



- Description using **Bézier patches**
- Easy texture mapping

Cutting / tiling

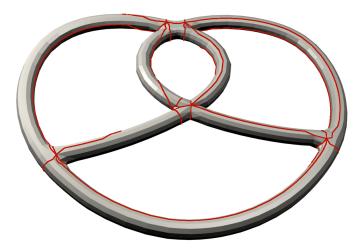
Combine geometry and topology

Non trivial tiles

Conclusion

Applications

Quadrangulation: results



Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Applications

Semantic segmentation

• Removing the detected extrema

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Applications

Semantic segmentation

- Removing the detected extrema
- Perform a **cutting into cylinders**

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Applications

Semantic segmentation: results

Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

Applications

Semantic segmentation: results

Cutting / tiling

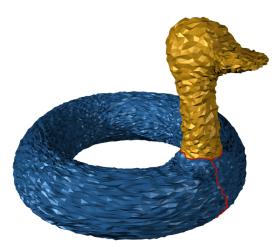
Combine geometry and topology

Non trivial tiles

Conclusion

Applications

Semantic segmentation: results



Cutting / tiling

Combine geometry and topology

Non trivial tiles

Conclusion

- Surfaces
- Shape description
- Cutting / tiling
 - Cutting: why?
 - Surface cutting
 - Tiling a surface
- Combine geometry and topology
 - Non-Euclidean distances
 - Medical imaging application
 - Selecting the extrema
 - Computer graphics application
- Non trivial tiles
 - Cutting into cylinders
 - n-cets
 - Cutting by *n*-loops
 - Applications

Conclusion

- Synthesis
- Future

Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion
000000	00000000	000000000000000000	000000000	•0
Synthesis				

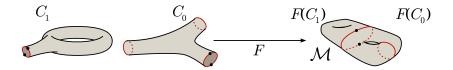
Conclusion

Cutting / tiling:

- Exploit the topology
- Integrate the geometry
- Supervise the topology of the tiles

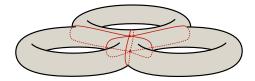
Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion ○●
Future				
Future				

• Expand the using of M-tilings



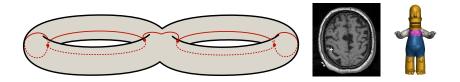
Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion ○●
Future				
Future				

- Expand the using of **M-tilings**
- Explore possibilities of the *n*-loops



Introduction	Cutting / tiling	Combine geometry and topology	Non trivial tiles	Conclusion ○●
Future				
Future				

- Expand the using of **M-tilings**
- Explore possibilities of the n-loops
- Work on the applications allowed by computational topology



Implementation

Point clouds

Découpage topologique: détails • Plus court lacet non-séparant • Améliorations

6

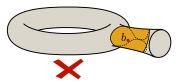
Implementation

Point clouds

Shortest non-separating loop (1)

Given a **basepoint** b

- Using a **"geodesic" distance** (e.g. Dijkstra¹)
- Circular wavefront propagation
- Catching the junctions (and their nature)



Complexité: $O(n \log n)$

Dijkstra, A note on two problems in connexion with graphs. Numerische Mathematik, 1959.

¹Dijkstra. E. W. A note on two problems in connexion with graphs. *Numerische Mathematik*, 1(1):269–271, 1959.

J.-M. Favreau (UBP/CNRS)

Tools for tiling surfaces

Découpage topologique: détails 0000 Plus court lacet non-séparant Implementation

Point clouds

Shortest non-separating loop (2)

General method:

- Construct a **set** *B* potential **basepoints**
- $\forall b \in B$ compute the **shortest** non-separating **loop**
- Keep the shortest

Complexité: $O(|B|n \log n)$

Découpage topologique: détails •••• Plus court lacet non-séparant Implementation

Point clouds

Shortest non-separating loop (2)

General method:

- Construct a **set** *B* potential **basepoints**
- $\forall b \in B$ compute the **shortest** non-separating **loop**
- Keep the shortest

How to compute *B*?

Complexité: $O(|B| n \log n)$

Découpage topologique: détails •••• Plus court lacet non-séparant Implementation

Point clouds

Shortest non-separating loop (2)

General method:

- Construct a **set** *B* potential **basepoints**
- $\forall b \in B$ compute the **shortest** non-separating **loop**
- Keep the shortest

How to compute B? Principle: a set crossed by all the non-separating loops

Complexité: $O(|B| n \log n)$

Découpage topologique: détails 0000 Plus court lacet non-séparant Implementation

Point clouds

Shortest non-separating loop (3)

Principle: a set crossed by all the non-separating loops

Input: a 2-mesh \mathcal{M} (non homeomorphic to a sphere) **Begin**

- Select a starting triangle t
- Add t to a new 2-mesh \mathcal{M}'
- While all triangles are not visited do
 - Select a non visited triangle t_i adjacent to a visited triangle
 - Stick t_i to its neighbours on $\mathcal{M}'(\text{preserving the genus of } \mathcal{M}': \mathbf{0})$
- *B*: set of the boundary points of \mathcal{M}'

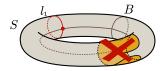
Implementation

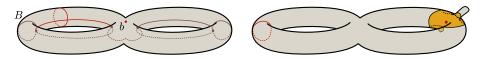
Point clouds

Improvements of the Cutting Algorithm

Improvements of the shortest loop computation:

- Bounded Dijkstra (using previous cuts)
- Ordering basepoints
- Use minimal length





Implementation

Point clouds

Découpage topologique: détails
Plus court lacet non-séparant
Améliorations

• TAGLUT

Implementation •••

Point clouds

TAGLUT TAGLUT Topological And Geometrical Library : a Useful Toolkit

Informations:

- License: GPL v2 (http://jmfavreau.info/?q=en/taglut)
- Languages: C++, python (et xml)
- Supported formats: vrml, ply, obj, etc.

Functionalities:

- Cutting algorithms (topology & geometry)
- Display and input/output functionalities
- Binding with blender
- Scriptable with python

TAGLUT

blender interface

Implementation • Point clouds

Small tools		Cutting	Cutting		
UV mapping		Appl	y cut		
ABF	÷	Create copy	Draw border		
Precision: 7	•	Patch I	oorders		
 Maximum iteration: 30 	•	Pa		Patch all	\$
Grid	\$	Topolog	jical cut	Optimal (distance)	\$
Grid size: 16	•			PCA	\$
Extract border				Euclidean	\$
Information				Use weights	
Information	_			Cut all	\$
				No merge	\$
		Geomet	rical cut		
				-	
Advanced	÷	Ab	out	Exit	

Implementation

Point clouds

Découpage topologique: détails
 Plus court lacet non-séparant
 Améliorations

J.-M. Favreau (UBP/CNRS)

Geometry

Normals' computation

Initial data:

- A sequence of **2D point clouds**
- Rigid reconstruction on subsequences
- A sequence of **3D point clouds**

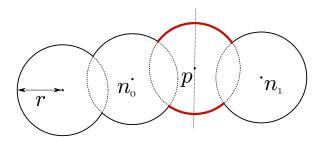
Implementation

Point clouds ●○○

Geometry

Normals' estimation

• offset approach



Implementation

Point clouds ○●○

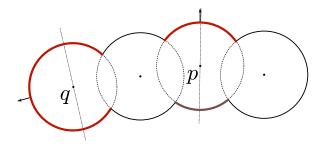
Implementation

Point clouds ○●○

Geometry

Normals' estimation

- offset approach
- Detect the boundary property



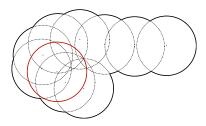
Implementation

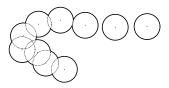
Point clouds ○●○

Geometry

Normals' estimation

- offset approach
- Detect the **boundary property**
- Local adjustment of the radii

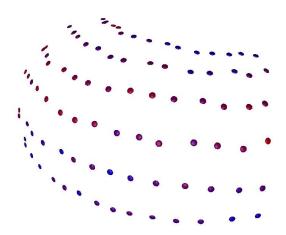




Implementation

Point clouds

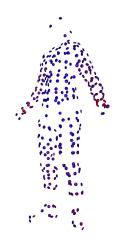
Geometry



Implementation

Point clouds

Geometry



Implementation

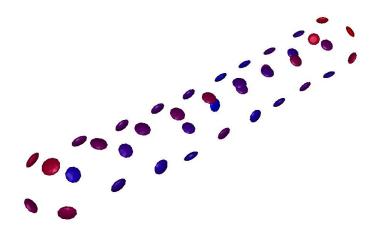
Point clouds

Geometry

Implementation

Point clouds

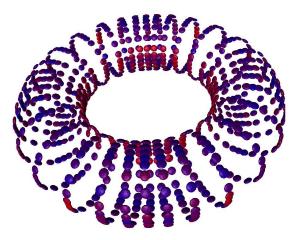
Geometry



Implementation

Point clouds

Geometry



Implementation

Point clouds

Geometry

